JURNALPRAKTIKUM FISIKA LABORATORIUM ACCOUSTIC Koefisien Absorpsi Bunyi Rheina Aurely Shavira, M. Ibram H., Faridawati,MSi Departemen Fisika, Fakultas Sains, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia e-mail: bramantya.r@ - Impedance tube is a method that is eficient to use to Gelombang bunyi sinusoidal adalah gelombang yang

Statistik adalah proses dimana data dikumpulkan dan dianalisis. Koefisien variasi dalam statistik menjelaskan sebagai rasio standar deviasi terhadap rata-rata aritmatika, misalnya ungkapan standar deviasi adalah 15% dari rata-rata aritmatika adalah variasi koefisien Berapakah Koefisien variasi? Koefisien variasi adalah ukuran variabilitas relatif. Koefisien variasi adalah rasio simpangan baku terhadap rata-rata. Sangat berguna jika kita ingin membandingkan hasil dari dua penelitian atau tes yang berbeda yang terdiri dari dua hasil yang berbeda. Misalnya, jika kita membandingkan hasil dari dua pertandingan berbeda yang memiliki dua metode penilaian yang sama sekali berbeda. Seperti jika sampel X memiliki CV sebesar 15% dan sampel Y memiliki CV sebesar 30%, maka dapat dikatakan bahwa sampel Y memiliki lebih banyak variasi relatif terhadap rata-ratanya. Ini membantu kami menyediakan alat yang relatif sederhana dan cepat yang membantu kami membandingkan data dari seri yang berbeda. Formula untuk menghitung koefisien variasi Koefisien Variasi = Standard Deviasi / Mean × 100 Dalam simbol CV = SD/x̄ × 100 Langkah-langkah mencari Koefisien Variasi Untuk langkah menghitung koefisien variasi mari kita lihat contohnya. Contoh Dua anak laki-laki sedang bermain kriket dan sepak bola skor yang dicetak oleh anak laki-laki tersebut adalah sebagai berikut- Sepak bola Jangkrik Berarti 24 46 SD 13 35 Langkah 1 Sekarang, bagi standar deviasi dengan rata-rata untuk sampel 1 sepak bola 13/24 = 0,5416 Langkah 2 Sekarang, kalikan langkah 1 dengan 100 0,5416×100=54,16% Langkah 3 Sekarang untuk sampel 2, bagi standar deviasi dengan rata-rata 35/46=0,7608 Langkah 4 Sekarang, kalikan langkah 2 dengan 100 0,7608×100= 76,08% Koefisien Variasi dalam Konteks Keuangan Ini membantu kita dalam proses pemilihan investasi karena itu penting dalam hal keuangan. Dalam matriks keuangan, ini menunjukkan kepada kita rasio risiko terhadap imbalan yang berarti di sini standar deviasi/volatilitas menunjukkan risiko investasi dan rata-rata ditunjukkan sebagai imbalan yang diharapkan dari investasi. Para investor di perusahaan mengidentifikasi rasio risiko terhadap imbalan dari masing-masing sekuritas untuk mengembangkan keputusan investasi. Dalam hal ini, koefisien yang rendah tidak menguntungkan ketika pengembalian yang diharapkan rata-rata di bawah nilai nol Rumus perhitungan koefisien variasi dalam konteks keuangan Koefisien variasi = /μ × 100% Di mana, – standar deviasi μ – rata-rata Contoh Soal Soal 1 Standar deviasi dan rata-rata data masing-masing adalah 9,7 dan 17,8. Temukan koefisien variasi. Penyelesaian SD/ = 9,7 rata-rata/μ = 17,8 Koefisien variasi = /μ × 100% = 9,7/17,8 × 100 Koefisien variasi = 54,4% Soal 2 Standar deviasi dan koefisien variasi data masing-masing adalah 2,5 dan 36,7. Carilah nilai rata-ratanya. Penyelesaian CV=36,7 SD/= 2,5 Rata-rata/x̄=? CV = /x̄ × 100 36,7 = 2,5 / x̄ ×100 x̄ = 2,5/36,7×100 x̄ = 6,81 Soal 3 Jika rata-rata dan koefisien variasi data masing-masing adalah 24 dan 56, maka tentukan nilai standar deviasinya? Penyelesaian CV=56 SD/=? Rata-rata/x̄= 24 CV= /x̄ × 100 56 = / 24 × 100 = 24×56/100 = 13,44 Standar deviasi adalah 13,44 Soal 4 Rata-rata dan standar deviasi nilai yang diperoleh 40 siswa dari suatu kelas dalam tiga mata pelajaran Matematika, Bahasa Inggris dan ekonomi diberikan di bawah ini. Subjek Berarti Deviasi Standar Matematika 56 11 Bahasa inggris 78 16 Ekonomi 69 13 Manakah dari tiga subjek yang menunjukkan variasi tertinggi dan mana yang menunjukkan variasi nilai terendah? Penyelesaian Koefisien variasi untuk matematika =/x̄ × 100 =11 x̄=56 CV = 11/56×100 Koefisien variasi untuk matematika= 19,64% Koefisien variasi untuk bahasa Inggris= /x̄ × 100 =16 x̄=78 CV = 16/78×100 Koefisien variasi untuk bahasa Inggris= 20,51% Koefisien variasi untuk ekonomi= /x̄ × 100 =13 x̄=69 CV = 13/69×100 Koefisien variasi untuk ekonomi =18,84% Variasi tertinggi adalah dalam bahasa Inggris. Dan variasi terendah adalah di bidang ekonomi. Soal 5 Tabel berikut memberikan nilai rata-rata dan variansi tinggi dan berat badan siswa kelas X di suatu sekolah. Tinggi Berat Berarti 166cm 65,60 cm Perbedaan 85,70 cm 39,9kg Mana yang lebih bervariasi dari yang lain? Penyelesaian Koefisien variasi untuk ketinggian Rata-rata x̄1= 166cm, ragam 1² = 85,70 cm² Oleh karena itu standar deviasi 1 = 9,25 Koefisien variasi /x̄ × 100 = 9,25/166×100 = 5,57% Untuk ketinggian Koefisien variasi untuk bobot Rata-rata x̄2= 65,60kg , varians 2² = 39,9 kg² Oleh karena itu standar deviasi 2 = 6,3kg Koefisien variasi /x̄ × 100 = 6,3 / 65,60×100 Untuk berat = 5,57% dan = 9,54% Karena C .V2 > C .V1 , berat badan siswa lebih bervariasi daripada tinggi badan. Soal 6 Jika rata-rata dan koefisien variasi data masing-masing adalah 16 dan 40, maka tentukan nilai standar deviasinya? Penyelesaian CV=40 SD/=? Rata-rata/x̄= 16 CV= /x̄ × 100 40 = / 16 × 100 = 16×40/100 = 6,4 Soal 7 Rata-rata dan standar deviasi nilai yang diperoleh 40 siswa dari suatu kelas dalam tiga mata pelajaran Matematika, Bahasa Inggris dan ekonomi diberikan di bawah ini. Subjek Berarti Deviasi Standar Penelitian sosial 65 10 Sains 60 12 Hindi 57 14 Manakah dari tiga subjek yang menunjukkan variasi tertinggi dan mana yang menunjukkan variasi nilai terendah? Penyelesaian Koefisien variasi untuk IPS = /x̄ × 100 =10. x̄=65 CV = 10/65×100 Koefisien variasi untuk IPS = 15,38% Koefisien variasi untuk Sains = /x̄ × 100 =12 x̄=60 CV = 12/60×100 Koefisien variasi untuk sains = 20% Koefisien variasi untuk bahasa Hindi = /x̄ × 100 =14 x̄=57 CV = 14/57×100 Koefisien variasi untuk bahasa Hindi = 24,56% Variasi tertinggi ada di bidang ekonomi. Dan variasi terendah ada di matematika.

92 2 2 9 2 6]0 1 1] 10 1 5. Koefisien korelasi. r = +1 ( kuat dan Bentuk umum dari persamaan regresi berdasarkan data-data pada tabel 13 dapat diekspresikan dalam model matematika seperti yang dapat dilihat pada persamaan berikut: 3.624 + 1.239 Xi, dengan r = 0.82 maka P = 0.6724 yang artinya kontribusi dari variasi X] terhadap variasi

multikolinieritasadalah nilai Tolerance > 0,1 atau sama dengan nilai VIF < 10. Dari hasil pengolahan data dengan program SPSS diperoleh hasil sebagai berikut: Tabel 5.3 Hasil Uji Multikolinieritas Model Collinearity Statistics Tolerance VIF 1 (Constant) Kepemilikan Manajerial .948 1.055 Kepemilikan Institusional .755 1.325

Diversifikasiproduk yang dilakukan oleh agroindustri minuman kesehatan instant merek "Dia" adalah dengan cara menganekaragamkan variasi rasa minuman kesehatan instant. merek "Dia" pada tahun 2001-2011 adalah sebagai berikut: Tabel 10. Data Volume dan Omzet Penjualan Agroindustri Minuman Kesehatan Instant Merek "Dia" Tahun 2001 Dalambentuk gas, koefisien difusi normal dari setiap molekul adalah antara 10-6 untuk 10-5 m 2 / s. Kisaran nilai koefisien difusi normal adalah 10-10 untuk 10-9 m 2 /s dalam larutan air. Sirkulasi fluida selalu didominasi oleh konveksi, dan diperlambat dalam skala panjang harian. Sebaliknya, dispersi molekul cair ini melambat. . 260 40 401 121 406 203 384 158

koefisien variasi dari data 6 10 6 10 adalah